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NUMERICAL METHODS IN CONTINUUM MECHANICS

FINAL TECHNICAL REPORT

1. STATEMENT OF THE PROBLEMS STUDIED

Five different problems are studied in this project. They are stated
briefly below: '

(a) HETEROGENEOUS DIFFUSION AND THE COMPACT VOLUME METHODS

In this paper we study heterogeneous diffusion in the context of
heat conduction in laminated material, heat conduction with phase change
(the Stefan problem) and fluid flow in porous media (Richards'
equation). We discretize these problems via the compact volume method
(CVM). We illustrate that this method is higher order accurate in the
flux error than traditional methods. The resulting nonlinear algebraic
systems are approximated by different versions of the SOR and ADI
schemes. Vector and multiprocessing implementations were presented,
which indicated a suitability of these methods for high performance
computing.

(b) INDUCED CONTRACTIVE METHODS FOR FREE BVPs

In this paper we consider numerical schemes for the solution of
nonlinear algebraic systems which evolve from the discretization of the
Stefan problem, and from the fluid flow in a porous media problem,
Richards' equation. We presented analysis of induced contractive methods
for free boundary value problems. Both the ADI and SOR versions
vectorize very well. In 3D problems with complicated nonlinear terms we
expect the ADI version to be more robust and to perform equally as wel
as with the SOR version.

(c) NUMERICAL SOLUTION OF FLUID FLOW IN PARTIALLY SATURATED
POROUS MEDIA

This paper describes an SOR algorithm for solving the nonlinear
algebraic system which evolves from Richards' equation that modeis fluid




flow in a porous media. The moisture content and hydraulic conductivity
functions are approximated by piecewise linear functions obtained from
field data. The resulting algebraic system is solved by a variation of the
nonlinear SOR algorithm. The advantage of this approach is that it avoids
some of the numerical oscillations associated with large derivatives in
the data. Numerical calculations are presented and illustrate the
following: (i) agreement of the numerical model with observed data,
(it) dependence and comparison results as a function of uncertain data,
and (iii) suitability of these algorithms for multiprocessing
computations via domain decomposition methods. Extension of these
algorithms to heterogeneous porous media fluid flow are discussed.

(d) A COMPACT FINITE VOLUME SCHEME FOR 2-D STEFAN PROBLEMS AND
VECTOR/MULTIPROCESSOR COMPUTERS

We consider both the compact finite volume and finite difference
space discretizations of the Stefan problem. The resulting algebraic
systems are solved by nonlinear versions of ADI and SOR. Both algorithms
contain significant parallelism which is demonstrated on two
vector/multiprocessing computers, the Alliant FX/40 and the Cray Y-MP.
Numerical experiments indicate that the compact discretization and ADI
give the best accuracy with the minimum computational cost.

(e) A COMPARATIVE STUDY OF COMPACT FINITE VOLUME METHODS FOR
THE 2-D AND 3-D DIFFUSION EQUATIONS WITH FINITE DIFFERENCE ADI
AND SOR

Recently developed compact finite difference scheme (CPT) were
applied to two and three dimensional diffusion equations. The relative
merits of CPT-ADI were investigated with other computational schemes
such as finite difference-ADI and FDM-SOR. The numerical results
obtained from these three approaches are compared to known analytical
solutions. According to our resuits CPT-ADlI was found to be a superior
scheme with regard to accuracy and speed.




2. SUMMARY OF THE MOST IMPORTANT RESULTS: THREE MOST
IMPORTANT RESULTS ARE GIVEN BELOW:

() We have given an analysis of induced contractive methods for free
boundary value problems. The SOR version and the AD! version of
Algorithm seemed to perform ecually well. However, the SOR version was
very sensitive to the choice of SOR parameter, which contrasts with the
AD! method which was observed to be fairly robust with respect to its
acceleration parameters.

Both ADI and SOR versions vectorize very well, and as expected, in
3D problems with complicated nonlinear terms the ADI version was found
to be more robust but perform equally as well as with the SOR version.

(ii) We have shown for a number of heterogeneous diffusion problems
that compact volume discretization method gives higher order error
estimates for both function and flux errors. Moreover, we have
illustrated that both the ADI and SOR algorithms can be adapted to solve
the resulting nonlinear algebraic systems. Vectorization and
multiprocessing computers were shown to be effective in executing these
algorithms.

In the applications to the heat conduction in a laminate materials,

the Stefan problem, and Richard's equation, we have indicated how one can
extend the compact volume method to 2D and 3D space problems. All these
problems are of current interest to physical scientists and engineers.
Moreover, the mathematical analysis of convergence problem using the
more complicated versions of CVM is currently needed.
(ili) The Richard's equation is approximated by the finite difference
method, and the empirical data for the moisture content and the hydraulic
conductivity were approximated by pieecewise linear functions. The
resulting non-linear algebraic system is solved by a variation of non-
linear SOR iterative method.

Good convergence properties are observed for three types of
calculations which were chosen to demonstrate the feasibility of realistic




numerical simulations using the SOR iterative methods. These includes an

accurate simulation of fluid flow in Brindabella Loam, a sensitivity

analysis of the computed solution upon the empirical data, and the use of
multiprocessing computers via domain decomposition methods.

We expect the methods of this paper to generalize via the compact
volume method to the more complicated heterogeneous case.

3. LIST OF PUBLICATIONS AND TECHNICAL REPORTS:

The following scientific articles are either published or sent for
publication:

(i) Induced Contractive Methods for Free Boundary Value Problems, R. E.
White, B. N. Borah, A. J. Kiyrillidis; sent for publication to the Journal
of Scientific Computing.

(il) Heterogeneous Ditfusion and the Compact Volume Method, R. E. White,
B. N. Borah, A. J. Kyrillidis; sent for publication to Journal of Scientific
Computing.

(iii) Numerical Solution of Filuid Flow in Partially Saturated Porous
Media, A. J. Silva Neto, R. E. White; sent for publication to Journal of
Mathematical Computing.
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Vector/Multiprocessor Computers, Proc. Int. Symposium, Advances in
Aerospace Sciences and Engineering 1992 (Dec.), Bangalore, India, pp.
5-8.

(v) A Comparative Study of Compact Finite Volume Methods for the 2-D
Diffusion Equations with Finite Difference ADI and SOR, B. N. Borah, R. E.
White, A. J. Kyrillidis, S. Sankarlingham; IEEE Computer Society Proced.
of the Twenty-Fourth Southeastern Symposium on System Theory, 1992,
pp. 76-78.




(vi) A Comparative Study of Compact Finite Volume Methods for 3-D
Diffusion Equations with Finite Difference ADI and SOR; B. N. Borah, R. E.
White, A. Kyrillidis, S. Shankarlingam, Y. Ji, IEEE Computer Society, the
25th Southeastern Symposium on System Theory, 1993, pp. 1-5.
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ATTACHMENT i1 Induced Contractive Methods for the Free
Boundary Value Problems




Induced Contractive Methods for Free BVPs3

by

R. E. Whitel, B. N. Borahz, A. . l(yrillidisl

Abstract. In this paper we consider numerical schemes for the solution of
nonlinear algebraic systems which evolve from the discretization of the Stefan
problem, and from the fluid flowin a porous media problem, Richards' equation.
Both problems generate systems of the form E + At A B(E) = d where B(E) is continuous
and nondecreasing. In the Stefan problem A will be aconstant symmetric matrix.
For Richards' equation A will, in general, be nonconstant and nonsymmetric.
However, in both cases A is an M-matrix. We consider nonlinear SOR and nonlinear
ADI schemes which may be implemented on vector/multiprocessing computers.

Subject Classifications. Primary 65H10; Secondary 76505, 76TO05.
1 Department of Mathematics, North Carolina State University
2 Department of Mathematics, North Carolina A&T State University
3 Sponsored by the Army Research Office, RTP, NC, Contract No. DAAL03-90-G-0126




§1. Introduction. The primary objective of this paper is the

development of algorithms which are applicable to the Stefan problem and 10
Richards' equation for fluid flow in a pc.ous media, see Richards [6], Freeze and
Cherry [1], and Paniconi et al. [5]. Both these problems have similar formulations,
and therefore, some of the algorithms which have been used for the Stefan problem
may be applicable to the more complicated Richards' equation. In Silva Neto and
White [7] and [8] a local nonlinear SOR algorithm was used for the numerical solution
of Richards' equation. In the present paper we describe methods which evolve from
the contractive algorithm in R. E. White [11], and this is reviewed in the second
section of this paper. Here we describe nonlincar SOR and nonlinear ADI iterative
methods which can be used for two and three space dimension problems. We will

emphasize the implementation on vector/multiprocessing computers.

In the contractive algorithm the linear solve step can be approximated by an
iterative method, and an induced contractive scheme is formed. This results in a
nonlincar nested iteration which is described in section three. In sections four and
five we study, as special induced contractive methods, the nonlincar SOR and ADI
schemes.  Section six contains numerical illustrations for the Stefan problem. In
section seven the similaritics of the Stefan problem and of Richard's ecquation are
discussed.  Computations are done which illustrate that this method gives good
comparisons with the computed and with the observed moisture data for Brindabella
loam [10]. The last section contains the conclusions and recommendations.

§2. The Contractive Algorithm. In this paper we consider
nonlinear problems of the form

E+ AAB(E)=d (1)
where

d,Ee %N,

Ac meN’

B(E) = [B;(Ep] € RN,

BiR =R i=1,...N.

For the Stefan problem E is the enthalpy and B(E) reflects the temperature. The

horizontal part of Figure 1 corresponds to the latent heat.
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Figure 1. B;(E)

Problems of the above form cvolve from the implicit time discretization of
nonlinear parabolic equations. The matrix A is from the elliptic part and is usually
an M-matrix, sce [4], or a symmetric positive definite (SPD) matrix. Here we
emphasize the M-matrix case where A may not be symmetric. The SPD matrix case
can be studied in the context of monotone mappings, see sections 6.4 and 12.1 in [4).

The function B(E) = [B;(E{)] € ®N where E;, E; > 0 has the following properties:

(Ei-Epcy 2 Bi(Ep -BiE)D.  ¢1>0, (2.1
Bi(E;) - B;(E )2 cE-Ey. c2 20, 2.2)
Bi(E)) 2 c3 E;, c3>0. (2.3)

The standard example is from the Stefan problem, but many other physical problems
can be put into the above form, see [2]. Later we will emphasize the case evolving
from fluid flow in porous media, see [1].

In [11] an alternate problem was proposed so that (1) could be solved via
successive approximations. It has the form
E+AAE)E=4d (3)
where
A(E) = [aj; (Bj(Ej) / Ep] and
A= [aij]'




The following algorithm was studied in [11]. There the ajj where functions of E, but

for the present we assume they are constants.

Algorithm 1. Contractive iteration. Consider (3). The successive
approximation is

EM+1 = (1 + At AEM))-! d = GEM).

If At is small enough, then p(At A(E)) <8< 1 forall E> 0, and consequently,
one can write (I + At A(E))"! in the form of a geometric series. This fact and some
technical arguments were used to show that G is a contraction on some box in ®N. In
practice the constraint on At does not secem to be severe. The following is a special
case of the theorem in R. E. White [11].

Theorem 1. Consider problem (3) and Algorithm 1. If A is an M-matrix in (1)
and ecach B; satisfies (2.1) - (2.3), then for suitably small At, G(E) is a contraction on
some box [e0, 2ldlleo]N.

In two and three space dimensions, the solve step will most likely be done by
an iterative algorithm. Later we shall focus on the SOR and ADI algorithms.

§3. Induced Contractive Method. Let S ¢ ®N and G:S>S be
contractive with 0 < ¢c < 1 and

l6E)-GEN. sE-E|_.

Suppose G is as in Theorem 1 where

S = [e0, 2 ldleo]N and
G(E) = (I + At AE))"! d.




Algorithm 2. Induced contractive iteration., Let ]+ At A(E) = B(E) - C(E)
be a splitting that defines a new map G:S—S

G(E)=EX
where
EO=E,
Ek = BE)'! C(E) EX-1 + BE)'1 d and
1<k K.
Theorem 2. Let the assumptions of Theorem 1 hold. If IIB(E)-! CE)lleo €£8<1

for all E € S, then there exists a constant K > 0 such that Em+1 = G(Em), where E0 ¢ S
and G is given by Algorithm 2, converges to the solution of Eg = G(Eg) € S.

Proof. Let H = BE)-! CE) and H =B(E)"'C(E).
G(E) =HEK-14+B-14

=HKE+ [ +..+HK-1]1B-1¢

=HKE+@-HK)@-Hy1B-14

=HKE+a-HKyB a-H)!ld

= HKE + (1 - HK) GE)

= HK € - G(E)) + GE)
If E = Eg = G(Es), then G(E;)=E,.

G(E)-G(E) =HK € - GE) + GE) - A*(E-G(E)-G(E)
= HK € - GE)) - HX(E-G(E)) + GE) +
HXE-GE) - A*E-GE)) - GE)
= HX(E-E) - HX(G(E)-G(E)) +G® - G(E) + (H* -H*)E - G(E))
Let E = EM with E™! = G(E™), and E = E = G(Ey).
Em+l _E;  =G(EM) - G(Es)
= HK (M - E) - HK (GE™) - G(Es)) + GEM) - G(Es)

By the assumptions on H and G, we have

HEM+1 . Eglles < (8K + 8K ¢ + ¢) IEM - Egll oo,
Since 8, ¢ < 1, we may choose K so that 5K + 5K c+c < (1+¢)/2=d<1.
Thus IEM+1 . Egliee < § IEM - Eglleo € 8™* IIED - Eglleo.




Corollary. Suppose p(B\E)'l C(E)) < 1 for all E € S. Then EM converges to Eg provided
K = K(m) is suitably large.

Proof. Since p(B(E)"! CE)) < 1,
HE)X = BE)'! CENK - 0asK — o.
HEM+1 _ Eglloo € (IHEM)KIIoo + IHE)K oo ¢ + ¢) IIEM - Eglloo,
For large enough K = K(m) we have
NEM+1 . Egllo € 8 IEM - Eglloo € 8™+1 IEO - Eglico, where & = (1 +¢) /2.

§4. Nonlinear SOR. In this section we consider the SOR version of the
splitting in the induced contractive method in Algorithm 2. If 0 < @ £ 1, then
Algorithm 2 conmverges to the solution of (1).

Theorem 3. Let assumptions of Theorem 1 hold. Consider the SOR splitting

I+ At AE) = (-:-)- (I + At D(E)) - At L(E)) - (I—TO) d + At D(E)) + At U(E))

Morecover, if At is further restricted so that I + At A(E) is uniformly strictly diagonally

dominant, then we may choose K independent of m.

Proof. I+ At A(E) is an M-matrix, and this splitting is a weak regular
splitting for all E € S. Thus p(H(E)) < 1, and by the above Corollary E® must converge
to Eg provided K = K(m) is suitably large.

If we restrict At so that I + At A(E) is, uniformly with respect to E € S, strictly
diagonally dominant, then we can show that the assumptions of Theorem 2 hold. This
is done by standard method and is, for o = 1,

-AtY a,(E)

-1 i
HB(E) C(E)n_ < max 17 Ata(E) - Atza.-j(E) Sé<l.

<8
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§5. Nonlinear ADI. In this section we consider the ADI version of the
induced contractive method in Algorithm 2. Here the analysis is based on M-
matrices, as contrasted with SPD matrices in Ortega and Rheinboldt [4]. Later this will
be useful as the analysis does not require symmetric matrices for the application to
Richards' equation.

Let A=H + V and A(E) = H(E) + V(E) where H and V represent the grid rows and
grid columns, respectively. H = (1/2) i + At HE) and V = (1/2) I + At V(E) so that
AE=H+ V.

Theorem 4. Let the assumptions of Theorem 1 hold. Consider the ADI splitting

I+ At A(E) = B(E) - CE)

where
BE)yl=@Il+ V)yl g+ @I-H) @I+ H)1] and
C(E) = A(E) - B(E).

There exists a constant aQ such that if « 2 ag 2 0, then Algorithm 2 converges to the
solution of (1).

Proof. We shall show that the splitting is a weak regular splitting of the

‘M-matrix I + At A(E).

BE)l=@I+ V)l {l+@I-H) @I+ H1)
=(al+ V)l @I+ H)+ (@I-H) @I+ H)!
=(@l+ V)1 Qal (@I + H)1.
By the conditions on B(E) there exists aj 2 O such that for a 2 a1, al+ Vadal+H

are M-matrices. Thus B(E)'1 2 0. Moreover, there exists a2 2 0 such that for @ 2 a2,

al- I:I,ul- \" 2 0. Thus for a 2 ag = max (a], 2)
BE)! CE)=(al+ V)! (@I-H) @1+ H)1@I-V)20.
By the Corollary to Theorem 2 Algorithm 2 converges to the solution of (1).

§6. Numerical Experiments for the Stefan Problem. In this section
we consider the numerical solution of a one-phase Stefan problem in two space
dimensions where the domain D = (0,1) x (0,1) x (0.T), T = 1/42. The exact solution of




El - B(E)xx - ﬁ(E)yy =0

where
E+1, E<-1
B(E)={ 0, ~-1<E<0
E, E>0
is

] {ex-(uﬂ)(x+y)_1, t—(IV2) (x +y) 20

-1, t-(INZ) (x+y) <0

The initial condition on E and the Dirichlet boundary condition on B(E) are
implicitly given in the above formula for E. The space variables were discretized by
the traditional five point finite difference method resulting in the nonlinear
algebraic system (1). We compared the performance of the SOR version of the
induced contractive algorithm, denoted simply as FDM-SOR, with the ADI version of
the induced contractive algorithm, denoted as FDM-ADI. The computations were on
the vector/multiprocessing computer Cray Y-MP. The Cray was used as a single
processor.

The parameters set for this algorithm specified the number of nodes in each
direction, the acceleration variables and the error tolerance. For our experiments,
the number of nodes was the same for each space and time direction. Thus, the time
step size is approximately forty times the maximum allowable time step size for this
test problem and for the explicit method.

Both the FDM-SOR and the FDM-ADI methods showed the same pattern with
respect to the number of iterations for convergence. The tolerance values were set
at €ijp = 10'5.eom = 10-4, for the inner and outer iterations, respectively. The number
of outer iterations was three, in all refinements considered of a basic 256 cell (16 x
16) spatial discretization, which we will subsequently refer to as the basic problem.

The number of inner iterations can be considerably decreased by the correct choice

of the acceleration parameter. For the SOR version of Algorithm 2 we used ® = 1.5,
1.6, 1.7, and 1.8 for the number of cells = 256, 1024, 4096, and 16,384, respectively. For
the ADI version of Algorithm 2 we used a = 4.0, 6.0, 8.0, and 10.0 for the number of cells
= 256, 1024, 4096, and 16,384, respectively.




Our intent was not to determine an optimal value for the accelcration
parameter but rather to determine an appropriate value at which the inner
iterations are minimal for our test problem. Our numerical experiments showed that
the appropriate value of « varied between 1.5 and 1.8 for all refinements of the basic
problem. Our numerical experiments showed that the value of the acceleration
parameter o increases considerably with successive refinements of the basic
problem. Experiments showed that a can be chosen without much consideration,
which is an advantage of the FDM-ADI version of Algorithm 2.

Table 1. CPU time (secs) on Cray-YMP,
Algorithm 2/SOR

lalg 2 \ cells 256 1024 4096

serial

vector l 6

In our experiments we used two versions, serial and vector, of the codes that
ran on the vector/multiprocessing computers. The purpose here was to determine
the degree of vectorizability for each method. Tables 1 and 2 show the CPU times for
both algorithms to solve each of the successive refinements of our basic mesh. In
the case of FDM-SOR method the traditional red-black ordering of the nodes allows
effective vectorization. In the case of FDM-ADI method we implemented the vector
version of the basic tridiagonal solver.

Table 2. CPU time (secs) on Cray-YMP,
Algorithm 2/ADI

alg 2 \ cells
serial

vector




Tables 1 and 2 illustrate that the FDM-SOR method exhibits higher speed-ups as
compared to those of the FDM-ADI method. The CPU time of the vector FDM-SOR
method was the smallest. Some of the larger CPU time for the FDM-ADI method is
attributed, in this case, to the computation and storing of the components of A(E).

Next we considered a version of the ADI method that uses variable a. The
calculations of the variable a were done using the scheme in [9] where a = At and b =
1/ax2. Although this scheme was designed for a particular boundary value problem,
it did work well for our nonlinear problem and was fairly robust. Table 3 shows the
CPU times for the vectorized SOR, ADI with constant a, and ADI with variable a. As the
number of unknowns increases, the merits of the ADI method with variable o become
clear.

Table 3. CPU times for Algorithm 2

alg\cells 256 1024 4096 16 384
J On
SOR ;

ADI

ADI var o

§7. Fluid Flow in a Porous Media: Richards' Equation. Richards'
equation for fluid flow in a porous media was first formulated in 1931, see [6). It is a
nonlinear parabolic equation for the pressure head = ¥ where

h=W¥ + 2,

and h is called the hydraulic head. The gravitational direction is given by z. Darcy's
Law is used to form

O(¥) - V-K(¥Y) Vh=0 where

K = hydraulic conductivity and ® = moisture content. They are empirical functions of
¥, see [1] and [3] and Figures 2 and 3
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K¥)
>
.03
-4 €
>
b4
Figure 2. K = K(¥) = hydraulic conductivity
4
e(Y)
>
30
1 .05
—»
¥

Figure 3. © = 6(¥) = moisture content

In references [1] and [3] it is noted that the above curves may differ according
to "wetting” or "drying", and the slopes can be large, The functions can be
approximated by rational polynomials of order 4 or 5. This is done so that traditional
analytic methods can be used; however, this introduces some approximation errors
and the functions are expensive to compute.




Richards' Equation.

8(¥) - V-K(¥) V¥ = K(¥)z

Robin boundary conditions are typical and have the form K(\P)gh; given when n is a

unit outward normal to the surface.

In a recent paper by Paniconi et al. [5] several numerical methods were
described, and some numerical experiments in one dimension were done. In the
cases were the slopes of ® and K were large, numerical difficulties were encountered.
The moisture function ©O(¥) is analogous to the enthalpy function E which is a
discontinuous function of temperature in the Stefan problem. This suggests that one
may be able to apply the following moisture formulation of Richards' equation.

Let E =6(¥) and apply the Kirchhoff transformation to the hydraulic
conductivity.

b 4
u=FW¥) = jK(’\F)dT'.

¥o
¥ = Fl(u),
E = 8&(F-1(u)),
B(E) =u and

Y(E) = K(6"1(E)).

Then Richards' equation can be written in terms of E where E is the primary
unknown and represents the moisture.

Moisture Formulation of Richards' Equation.
E{ - AB(E) = V(E)z
Here the term on the right side makes this a little more complicated than the

Stefan problem. There are essentially two cases: cither the derivative of y is not too
large, or the derivative is large or even a jump discontinuity occurs.




In the first case we may write Y(E)z = y(E) E; where 0 < Y(E) < M < oo, A

reasonable implicit time discretization, say in one space dimension, is for Ej from the
present time step and for E; from the previous time step

E-E 1 E,
e +Zx—2(-ﬁ(5-_|)+2ﬂ(5,~)—5(5.-#1))‘%‘_)(‘5“1 -E)=0.

Here the coefficient matrix is more complicated than in (1), but it is still an M-matrix

and the more general contractive algorithm in [11] can be used.

The second case is when 7Y'(E) is so large that y(E) appears to have jump
discontinuities. This is common once the space variables have been discretized. A
special case has been studied by A. Friedman [2] where existence of a weak solution to
the continuum problem is cstablished. There for H = the Heavyside function

8(¥)=a¥ + H(Y - ¥p),
K(¥) = k1 + (k2 - k1) H(¥ - ¥9),
Yo=0,k2=2and k] = 1.
Then the one space dimension form of Richards' equation is
(a u + Hu)) - uxx = H(u)x.
Let E = a u + H(u) and B(E) = u so that E = a B(E) + H(u), Hu) = E - a B(E) and
Et - Ex - B(E)xx + a B(E)x = 0.
A reasonable discretization has the form of (1) or (3). Under some constraint on Ax

A(E, will be an M-matrix, and the theorem in [11] will be applicable. In this case,
A(E) is tridiagonal, and hence, there is no need to use an induced iterative method.

In higher space dimensions the induced iterative methods will be more desirable.
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The above approximation of the empirical functions is very restrictive. In [7]
and [8) more accurate approximations are used so that diffusion of the fluid in a

partially saturated medium can be calculated. A slightly less accurate approximation
which will track a wet-dry interface is as follows. Here we have set y,=0.

9={alw+6p v<0

nLy+0, y20
and
_ k, y<0
K-{kq, v20

In our calculations we shifted the horizontal axis to the right so that 6 and K have

the graphs given in Figures 4 and 5. We used the K(6) form of the hydraulic
conductivity because it is continuous.

Y \
6(u)

¢
2
el
o
—>
U % u
dry wet

Figure 4. 6(u)
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>
e1 e2 0

Figure §. Ku)andK(6)

After using the Kirchhoff transformation, Richards' equation has a moisture
formulation form where




S .

ﬁE, E<§6
k

B(E) =} %‘—6,, 0, <E<6, |,

1

a (44
\T:(E-ezwz*-el, 6,<E

and
k, E<§,
K(E)={(k, - k,)( )+lcl 6, <Es@,
k2 0,<E.

For the one space variable problem we have

E -B(E).—-K(E),=0 ,0sx<1:>0
withb-undary conditions
B(E),+K(E)=R ,x=11>0
B(E),+K(E)=0 ,x=0,1>0
andinitial condition
E=06, ,0sx<1t=0.

The discretization for the interior cells is

E -E

Ar +Z;2-( -B(E._))+2B(E)-B(E, +1))——(K( i) — K(E)) =0.

The matrix in (3) is formed in a similar way, and for the interior cells

___1 B ).
% (E) Ax* E_,
E. K E.
ai,i(E)= sz (2ﬁ(E'l ) (‘ )) nd
___1 BE,). . K(E,)
a;;n(E)= sz( E,, +Ax E,, ).

The two end cells incorporate the boundary conditions in the standard way.
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loam:

6, =.11 = residual moisture

6, =.27 = from the moisture data
6, =.485 = saturated moisture
k=107

k, =.022
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In the following calculations we used the parameters that reflect Brindabella

No flow from sides or bottom
Ar=125[hr] with 40 time steps
Ax =.300/ 20[m] with 20 grid cells
@ = 1.2 the SOR parameter

g,=10" absolute error for inner SOR

R=0.0165[m/ hr]= flow fromtwp €,, =10~ absolute error for outer.

On the average 3 or 4 inner iterations and 5 to 8 outer iterations were required
for convergence. Figures 6a and 6b indicate the computed and observed moistures.
In Figure 6b the diamonds, triangles and squares represent the observed data at the
times 1.0, 2.25 and 5.0 hours, respectively. Note the agreement as the front

Once the bottom starts to fill the
In [7]

the later stages of this are modelled, but the calculations are more costly than in the

progresses from the top (left) to the bottom (right).
hydraulic conductivity increases and the diffusion becomes more important.

above model.
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Figure 6a. Computed Moisture
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Figure 6b. Observed Moisture
§8. C onclusions. We have given an analysis of induced contractive

methods for free boundary value problems. The SOR version and the ADI version of
Algorithm 2 scemed to perform equally well. However, the SOR version was very
sensitive to the choice of SOR parameter, and this contrasts with the ADI method
which was observed to be fairly robust with respect to its acceleration parmater.

Both the ADI and SOR versions vectorize very. well. In 3D problems with
complicated nonlinear terms we cxpect the ADI version to be more robust and to
perform equally well as with the SOR version.

The numerical examples were given for the two space variable Stefan
problem. Application of these methods to Richards' equation was outlined. For a one
space variable flow through the Brindabella loam we showed that the computed and

observed moisture were in good agreement.
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Abstract. In this paper we study heterogeneous diffusion in the context of heat
conduction in laminated material, heat conduction with phase change (the Stefan problem) and fluid
flow in porous media (Richards' equation). We discretize these problems via the compact volume
method (CVM). We illustrate that this method is higher order accurate in the flux error than
traditional methods. The resulting nonlinear algebraic systems are approximated by versions of the
SOR and ADI schemes. Vector and multiprocessing implementations are presented, and they
indicate that these methods are suitable for high performance computing.
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§1. Introduction. In this paper we consider diffusion problems in
heterogeneous materials. We use the compact volume method (CVM), which was introduced in
M. E. Rose [5], to discretize the governing differential equations. The advantage of CVM,
relative to the traditional methods such as finite differences, finite elements or boundary element
methods, is that CVM is higher order, in both the solution and the flux errors, accurate. Here we
illustrate quadratic convergence in errors in 1D problems related to heat conduction in a laminate,
heat conduction with phase change, and fluid flow in a heterogeneous porous media.

We do not give a theoretical analysis of the convergence. However, the resulting algebraic
systems are more carefully studied. Some iterative methods are described, and criteria for their
convergence are given. Vectorization and multiprocessing issues are discussed.

In section two we describe the CVM for linear heat conduction problems with discontinuity
in the thermal conductivity. Sections three and four are applications to the Stefan problem. In
section four we describe the CVM with the heat balance equation at the solid-liquid interface and
develop a scheme which converges quadratically for the solid-liquid interface, the solution and the
flux errors. The fifth section is an application to Richards' equation in 1D where the hydraulic
conductivity is piecewise linear in the solution and has a jump discontinuity in the space variable.

§2. CVM for Linear Problems. In this section we review the general form of
CVM as presented in M. E. Rose [5]. For problems of the form -uy, =f Rose proved quadratic
convergence in both u and uy. In order to establish the general form, consider the following
example:

“Uxx =f and u(0) = 0 =u(l).
t =" ¢ m ¢ = ¢ = ¢
u u2 u3 U4 us Ug u7

We partition the [0, 1] interval into 4 cells. The even nodes are inserted to insure continuity
of the flux at the cell boundaries. Each cell has length equal to 2 h.
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i = odd: SR Bl gng, and

i=even:

Uipg U _ Ui~ Ui
h h =~

The resulting algebraic system has the following form when u = [Uodd, Ueven] T Where uggq is the
vector of odd nodes and ueven is the vector of even nodes.

D, -C,Juul| |4
["Czn D, I“m] _[dz]

where
! 1
1 1
D, =-}-F 1 D, = 1
1
1
141 1
12_2_”{ 1 1f C,=G,

dl=h2[fl i fs f4]r- d2=[0 0 O]T'

In this case the coefficient matrix is irreducibly diagonally dominant, an M-matrix and also
symmetric positive definite. Therefore iterative methods such as SOR and ADI can be used.
Moreover, when ordering the nodes as even or odd, the matrix has the form as in the red-black
ordering for the FDM. Consequently, vector pipelines can be effectively used.

The coefficient matrix has a block structure which makes it easy to use block Gauss
elimination. For example, in the above we may eliminate uggq to get

{D2 - C21 D11 C12] ueven =d2 + C2) Dyl dy 2
where

2 -1
D;-Cy Dyl Cpp = #l-l 2 -1].

The following theorem is a well known generalization of the above.




Theorem 1. Consider the algebraic system in (1). If D} and D, - C;; D;-! C,; are nonsingular,

then (1) has a solution and it is given by (2) and Dj uegqg =d; + Cj2 Ueven-

The next example illustrates CVM where the media is heterogeneous, that is, the coefficient
in the differential equation has a jump discontinuity with respect to the space variable.

Example 1. Heat Conduction in a 1D Laminate.

-(k(x) ux)x = 10 x(1 - x),

u0)=0=u(l) and
1, x<0.5
k(x) =(2, x205"

The solution is formed by requiring u and k uyx to be continuous at x = 0.5. Both the CVM
and the FDM were used. The FDM has n cells and n - 1 unknowns and the CVM has n / 2 cells
and n - 1 unknowns. Tables 1 and 2 illustrate, for this example, that the FDM has both function
and derivative errors of order h while the CVM has both errors of order h2.

FDM:

i=odd:

i=even:

-[ki‘)-% uhlh—ui—ki—%u ul—l] hf

where 1<isn and ki) = Hi(x)) + kxiay))

[k 2= B = 2

where k;.tl = k(xiﬂ $€), &> 0 and

| + U1 — e ey
kf =t = i AL

where kI =k(x;t€), €>0.




Table 1. FDM for Heat Conduction in Laminate

n \ error Fct. Error Flux Error
8
16
32
64
128

Table 2. CVM for Heat Conduction in Laminate

n \ error Fct. Error Flux Error
8
16
32
64
128

The CVM generalizes to the 2D domain in the obvious way when a rectangular grid is
used. If an irregular 2D domain is required, then one may use a variation of the boundary element
method (see E. K. Bruch [1]) and finite element method (see R. E. White [10]). For example, if
we wish to use triangular elements and linear shape functions on -V-k Vu = f, then we can insert
an additional center node (node 0) in each element (These are analogous to the odd nodes in the 1D
case), see Figure 1.




Figure 1. CVM for 2D Element

First, we apply the boundary element idea to each element and solve for u at each center
node. This amounts to applying the Divergence Theorem to each element. Let q = -k Vu. Then

integrate V-.q=f overe
IRIE

By the Divergence Theorem

Lq-nds=”:f.

Here we assume u is known at the nodes 1, 2 and 3. The u can be expressed as linear function
above each subelement e;, e; and e3. Thus, the above boundary element equation has just u at the
center nodes as the only unknown.

Second, we form the equations for each unknown at the vertex nodes of every element
(These are analogous to the even nodes in the 1D case). This is done by requiring q to be
continuous at each edge of every element. This takes the form of 3 simultaneous equations for
every clement, and these are easily solved. One can also combine the four equations and
simultaneously solve for the four unknowns in every element. In either case the resulting system,
via assembly by elements, can be solved directly or iteratively.

(o))




§3. Application to the Stefan Problem. The FDM when applied to free BVPs
generates nonlinear algebraic problems of the form

E+AtABE)=d

where A is a matrix associated with the elliptic part. The compact volume method, CVM, as
described in [6, 7, 11] generates a larger system of the form

1
Att| [ D, -Cy B(E)] 3
o |T]-ca D, dz )

where D,, D, are diagonal matrices, Cy2 and Cy; are rectangular matrices. B(E) is as in the FDM
and is the temperature at the center of the cells. And u is the temperature at the boundary of the
cells. The diffusion equation for each cell (i = odd) is

Bi Uil — B(En) B(Ex) ul—l]
At 2h [ h h =d;. “)
The flux continuity equation at cell boundary (i = even) is
1 [BEi)-u; u;-BE;,)]|

Equation (3) should be viewed as a first version of the CVM method. We will want to write it in
the alternate form, as in the FDM,

1
Xt"*Dl(E)

1
HEH
—CuyE) D, u] |d2

B(E)

where D,(E) =diag|d

B(El)] D) — PE) and Cy(E)=Cy ——

E E

In two and three dimensions the problem is more complicated, but it appears that ADI schemes will
be useful in approximating the solution to such problems.




Consider the simplified problem (6). If D, is nonsingular, then we may solve for

u=Dj [d; + C5(E) E}

1 - .
Then e C12D; Cy(E)+ DI(E)] E=d;+C;;D3'd; ang
I ; (E) -
Kt+(Dl_C12D21 Czl)P‘E— E=d; +CpyD; dy.
E -1 d
Or, 7 1 01-Ci2Dy C) B(E) =d. M

Thus, the reduced problem in (7) has the form

E

-A—t+AB(E)=d

where A is a symmetric M-matrix. Provided A and d have been computed, SOR and ADI methods
as described in section 6.4 and 12.1 in {3], will be applicable.

A more direct approach is to consider the initial problem in (6). Algorithms 1 and 2 are
contractive as in the discretization given for the FDM, see [11].

Algorithm 1. Contractive.

I m 1
AatDIED)  -Cpp [ d ]
~Cy(E™) D, d2

EﬂH‘l

Y ®)

D, -Cy;

Theorem 2. If C.. D ] is an M-matrix, then for suitably small At, Algorithm 1 converges
21 D2

to the unique solution of (6).
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Algorithm 2. Induced Contractive.

I
DB -Cy,

Let =B(E)- C(E) be a splitting of the matrix in (6).
—Cy(E) D,
Eu#l.O" Eu )
Let 0 |=| | and define the iterates forO<k <K-1
u u
i E.u.m 7 } . Euﬂ.&
uuwl.hl = B(En) I(C(E )[ uuﬂ.& + 3‘2 (9)
3 Enﬂ [~ Eu+l.K
and um-ﬂ :I = uuﬂ.K }

The next theorem is a direct application of the results in {11].

Theorem 3. If p(B(E)-! C(E)) S 8 < 1 and the assumptions of Theorem 1 holds, then for K
suitably large Algorithm 2 converges to the solution of (6).

Example 2. One phase Stefan Problem in 2D and Algorithm 2.
In this example we use Algorithm 2 to compute the numerical solution of a one-phase

Stefan problem in two space dimensions where the domain D = (0,1) x (0,1) x (0,T), T =1/ V2.
The exact solution of

E;- B(E)xx - B(B)yy =0

where
E+1, E<-~1
B(E)={0, ~1<E<0
E, E>0

is
E {e"“/"z)("*”—l, t—-(WV2) (x+y)20
-1, t-(IN2) (x +y) <0




The SOR splitting. Note this is vectorizable because D; and D, are diagonal matrices. The
block structure in (6) reflects the red-black ordering. Vectorization is easily implemented.

The ADI splitting. Here the nodes in (6) must be reordered to reflect the classical order. For
the above example the unknowns will be ordered as

[El’ Uy, E3, Uy, E5’ Ug, E7]T

This gives collections of independent tridiagonal systems, and hence, vector versions of tridiagonal
solvers can be used.

This example illustrates the SOR and ADI splitting of Algorithm 2 on the above Stefan
problem. We compared the performance of the SOR version of Algorithm 2, which we will denote
simply as CVM-SOR, with the ADI version of Algorithm 2, denoted as CVM-ADI. The
computations were done on the Cray Y-MP. The parameters set for Algorithm 2 specified the
number of nodes in each direction, the acceleration variables and the tolerance. For our
experiments, the number of nodes was the same for each space and time direction. Thus, the time
step size is approximately forty times the maximum allowable explicit time step size for this test
problem.

The tolerance values were set at €, = 10-5, €,y = 104, for the inner and outer iterations,
respectively. We considered four refinements of the spatial discretization, and these were forn =
16, 32, 64, and 128 cells in each direction. Our intent was not to determine an optimal value for
the acceleration parameters but rather to determine an appropriate value at which the inner iterations
are minimal for our test problems. For the CVM-SOR method numerical experiments showed that
the appropriate values of ® were 1.5, 1.6, 1.7, and 1.8 for n = 16, 32, 64 and 128, respectively.
For the CVM-ADI method numerical experiments showed appropriate values of acceleration
parameter a were 4.0, 6.0, 8.0 and 10.0 for n = 16, 32, 64, and 128, respectively. Experiments
showed that a can be chosen without much consideration, which is an advantage of the CVM-ADI

version of Algorithm 2. We also considered a version of CVM-ADI that uses a more sophisticated '

acceleration scheme with variable ;.
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Table 3. CPU time (secs) on Cray Y-MP, for CVM-SOR

= 64

=128

alg2\n
serial

vector

In our experiments we used two versions, serial and vector, of the codes that ran on the
Cray. The purpose here was to determine the degree of vectorizability in each method. Tables 3
and 4 show the CPU time both algorithms took to solve each of the successive refinements of our
basic mesh. In the case of CVM-SOR method the block structure of the problem reflects the
traditional red-black ordering of the nodes and thus allows for effective vectorization. In the case
of CVM-ADI method we implemented the vector version of the basic tridiagonal solver.

Table 4. CPU time (secs) on Cray Y-MP, for CYM-ADI

alg2\n
serial

vector

Clearly the CVM-SOR method exhibits higher speedups as compared to those of the CVM-
ADI method. Both methods exhibit good accuracy. As noted above we also considered a version
of CVM-ADI that uses variable acceleration parameters, a;. Table 5 shows the CPU time of the
vectorized CVM-SOR, CVYM-ADI and the CVM-ADI with variable ¢;'s, denoted as ADIv. Here
we see that the variable o version of CVM-ADI is competitive with CVM-SOR, and the CVM-
ADIv seems to be more robust than the CVM-SOR. These results are consistent with those in [11]
where the FDM is considered.

Table 5. CPU times of the Versions of Algorithm 2

_alg\n
SOR

11




The single sweep ADI method also works quite well for two dimensional CVM
discretizations of the form (6). Let

D, -Cy,
=H+V,
["C21 D,
: .
1
| 0
H= +H and
0 O
| )
- i
| ®
V= +V.
0 0

ﬁ(E) and V(E) are consistent with the notation in (6). Then we can write

I
D1 —Cpp

=1+ HE)- - VE) = @+ VE)) - - HE).
-Cy(E) D,

From here one can use the two step ADI sweeps (See Rose [6]), or implicit single ADI sweeps as
follows.

Algorithm 3. Single ADI sweep.

Consider the time dependent CVM method where a sequence of algebraic problems of the
form (6) are considered. Let n = time step. The single sweep ADI method is for E= (E, u]T

(I +HE2) B2 = (0 1- VE) B +d and (10.1)

(I + V(Er+1)) B+l = (a1 - H(ER*12)) Br#122 4 d. (10.2)

The nonlinear problems (10.1) and (10.2) may be approximated via the contractive
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mapping; for example, in (10.1) with d the right side of (10.1)
Ek*l = (a 1+ HEY)1d,
Here o must be suitably large and can be used adaptively to obtain optimal convergence.
Example 3. One phase Stefan problem and Algorithm 3.

This example illustrates Algorithm 3 and the use of vector/multiprocessing computers.
Consider the above 2D one phase Stefan problem. The computations in Table 6 were done on an
Alliant FX/40 and Cray Y-MP. The Alliant FX/40 has two processors each with vector pipelines
and 170 nsec clock cycle time, and the Cray Y-MP was used with one CPU, vector pipeline and 4
nsec clock.

The CVM space discretization allows effective use of independent tridiagonal solvers in
cither the form of vectorized tridiagonal or multiprocessing tridiagonal algorithms. In the case of
the Alliant FX/40 both versions were used for the (2 cpu, vector) calculations. Table 6 records the
computing times (sec) for n cells in each direction and five different computer configurations.

Table 6. ADI and CPU Times

computer \n
Alliant (serial)
Alliant (vector)

Alliant (2 cpu, vector)
Cray (serial)
Cray (vector)

§4. Application to the Stefan Problem: Higher Order Approximation.
A more complicated problem, in one dimension, is the combination of (6), (11), (12) and (13).
Here we will use an nonlinear SOR scheme and use the generalization of M-matrices to M-
functions as described in section 13.5 of [3). More importantly, we will want to consider the
location of the solid-liquid interface; here the flux is not continuous as in (5).
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Suppose that at some iteration we observe B(E,) > u; and B(E,) < ug. Between x; and x,
there must exist an s such that B(E at s) = u;, see Figure 2.

temp. A

]
) LI

xo Xl S Xz X3 space

Figure 2. Phase Change

Thus (5) must be modified in three ways.
At x,,we are in a liquid cell [xg, s] and

E Ue— -u
Ei__1 |u-BE) PE)-uw| an
At s—-xg9] s-x; h
At s, we have the classic heat balance equation and
-L - [ug=BE)) BED -
Tt(s-s)_[ S—X;  Xp—§ | (12)
At x,, we are in a solid cell [s, x3] and
E - -
2__1 ["3 by _BCD "‘]=d2. (13)
At x3-5s h X2—S$




Definition: The CVM for the one dimensional free BVP has the form of (6) supplemented with
equations (11), (12) and (13).

The reader will note that equation (12) is a cubic with three distinct real roots. If we require
Is—3|<h, (14)

then we must select the middle root. The condition in (14) is a discretization of [s|Ar < A which has
been noted as an important constraint to avoid oscillations near the solid-liquid interface, see [7].

)

Figure 3. Solution of the Cubic Equation (12)

This seems to be a CFL type condition for the moving solid-liquid front. The analysis of
(3) or (6) can be done in either the context of

D, -Cp;
-Cy D,
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being a M-matrix or a SPD matrix. For the M-matrix case the system consisting of (6) coupled
with (11), (12) and (13) is most likely an M-function, see [3]. Consequently, nonlinear SOR
methods are applicable. Indeed, careful inspection of Figure 2 gives the off-diagonal antitone and
the diagonally isotone conditions for the component of the system for the unknown interface. The
other nodes have equations which are similar to the reduced enthalpy formulation of the Stefan
problem, and the reduced system is known to be an M-functions.

Algorithm 4. Enhanced SOR for two phase Stefan problem.

Consider (6), (11), (12) and (13) where the nodes i = 1 and 2 represent a possible change in phase
at some point in the iteration, require |s — 5| < 4 so that we must chose the center root of (12):

do an nonlinear SOR sweep of (6)
solve (12) for the center root
solve (11) and (13)

repeat until convergence.

The advantage of the more general CVM problem (6), (11), (12) and (13) is that the order
of convergence is higher than (6), or the FDM. This has been observed for a number of
experiments for one dimensional problems. The extension to two or three space dimensions will
be a little more challenging. It appears that the solid-liquid interface condition in higher dimensions
can be decoupled into equations similar to (11), (12), and (13). This suggests that a nonlinear
ADI scheme can be developed. In each direction a SOR algorithm similar to Algorithm 4 can be
used. Thus, we hope for two and three space dimensions, to be able to obtain higher order
convergence of the discrete problem to the continuum problem, and to be able to more accurately
locate the solid-liquid interface. The above schemes have a large portion of independent parts, and
hence, high performance computing can be used.

Example 4. Two phase Stefan problem and solid-liquid interface.
E; - B(E)xx =0
where
E, E<l1
BE)={1, 1SEs<2.
(E-2)+1, E>2
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The boundary and initial conditions were chosen so that the following was the solution

27>, x<t

e, X2t

E=

The solid-liquid interface is given by s(t) = t. In the calculation we started at t = 0.2 and
ended at t = 0.37. Over this time interval the average function and flux errors were tabulated as
well as the approximate value of the solid-liquid interface. Tables 7 illustrates quadratic (Ax2)
convergence for At = Ax2 and this example, in the solid-liquid interface error and the function
error. The convergence of the derivative error was at least linear (Ax) in all cases.

Table 7. CVM for Stefan Problem with At = Ax2

n\ error s Error Fct. Error Der. Error
10 S S8

20
40
80

160

Even if the criteria on At is relaxed, the errors remain relatively small as is illustrated by
~Table 8.

Table 8. CVM for Stefan Problem with At =0.1 Ax

n \ error s Error
0 . e

20
40
80
160
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§5. Application to Richards' equation. Richard's equation describes fluid
flow in a porous media and was initially formulated in L. A. Richards in 1931 [4]. Presently, it is
being extensively used in ground water modeling and in contamination modeling, see R. A. Freeze
and J. A. Cherry {2]. This equation has strong nonlinear terms in the empirical functions for
moisture and hydraulic conductivity, see [11]. Moreover, the porous media are often
heterogeneous; that is, they are dependent on space position and often have discontinuities in the
space variable. A simple 1D example of the steady state Richards' equation is as follows where u
is the pressure and k(x,u) is the hydraulic conductivity.

Example S§. Richards' Equation in 1D.

-(k(x,u) uy + k(x,u))x = f(x)
where
uw(0)=0,u(l)=1+a), +apand

3u+0.5, x<0.5

k(x,u) = {u +1, x20.5"

The right side was chosen so that

x4, x<0.5
u(x) = 4
X +a;x+ag, x205

was a solution. The constants a; and ag were chosen so that u and k u, + k were continuous at x =
0.5. The CVM has the form

i=odd: -[km _u_,ﬂ;;_-_u_, -k, E’-Tui +kyy = ki-l] = 2hf;
where k., =k(x,, F&,u,), €>0 and
i=even: k* y‘—*‘-l;-i‘- +k* =k u,;hu,ﬂ_ +k-

where k*=k(xteu), €>0.

The € >0 are used to insure the hydraulic conductivity is taken from the appropriate cell.
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Table 9. CVM for Richards' Equation

n\ error Fct. Erro kE
.
16
32
64
128

In the calculations recorded in Table 9, n / 2 are the number of cells, and there are n - 1
unknowns. Nonlinear SOR was used with the hydraulic conductivity being updated as soon as
any variables were computed. The function and flux =k uy + k errors were the max norm at the
center of the cells and cell boundaries, respectively. Inspection, of the table entries indicate the
CVM has quadratic convergence in both the function and flux errors.

The above example illustrates a fluid flow in a porous medium which has two layers where
the pressurc does not vary over a large range. Hence the hydraulic conductivity is a piecewise
linear function of position and pressure. Extension to the time dependent 2D problem where the
empirical functions depend only on the pressure are given in [11] and its references. These results
combine to suggest that the general problem can be solved in the present context.

§6. Conclusions. We have shown for a number of heterogeneous diffusion
problems that the CVM discretization method gives higher order error estimates for both the
function and flux errors. Moreover, we have illustrated that both the ADI and SOR algorithms can
be adapted to solve the resulting nonlinear algebraic systems. Vectorization and multiprocessing
computers can be use to effectively execute these algorithms.

In the applications to the heat conduction in a laminate material, the Stefan problem, and
Richards' equation we have indicated how one can extend the CVM to 2D and 3D space problems.
All these problems are of current interest to physical scientists and engineers. Moreover, the
mathematical analysis of convergence for the more complicated versions of CVM is certainly
needed.
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ABSTRACT :

This paper describes an SOR algorithm for solving the nonlinear algebraic system which
evolves from Richards' equation that models fluid flow in a porous media. The moisture
content and hydraulic conductivity functions are approximated by piecewise linear
functions obtained from field data. The resulting algebraic system is solved by a variation
of the nonlinear SOR algorithm. The advantage of this approach is that it avoids some of
the numerical oscillations associated with large derivatives in the data. Numerical
calculations are presented and illustrate the following: (i) agreement of the numerical
model with observed data, (ii) dependence and comparison results as a function of
uncertain data, and (iii) suitability of these algorithms for multiprocessing computations
via domain decomposition methods. Extension of these algorithms to heterogeneous

porous media fluid flow are discussed.

The calculations were done at the North Carolina Supercomputing Center.
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1. INTRODUCTION

The study of fluid flow in porous media has several important applications in
engineering (Kaviany 1991 and Nield and Bejan 1992). Specific examples are: filters for
industrial use, or separators in aerospace fuels (Kaviany 1991); use of geothermal energy
(Rae et al. 1983 and Kimura 1989, 1989a), oil recovery (Bear 1972); groundwater
(Mark 1992, 1993 and Clothier et al. 1981) and agriculture (Feng 1993).

Industrial chemical or radioactive effluents are sometimes deposited at the surface
or in drums that are buried underground. In both normal operations and in accidental
conditions, it is required to give an analysis of the transport of the contaminants through
the soil (Muralidhar 1990, 1993). The first step in this analysis is the mathematical
simulation of fluid flow through the soil.

Richards (1931) developed an equation that is a combination of the continuity
equation and Darcy's law (Philip 1969), and it models fluid flow in a porous medium. It is
a nonlinear parabolic partial differential equation which contains the empirical functions
for moisture content 6(h) and hydraulic conductivity K(h).

&h), -V-Kh)Vh-K(h), =0 in Qx(0,T) (1a)

where h is the hydraulic pressure head, z is the vertical direction and Q is the space
domain. The boundary condition of the third kind has the form

IK(h)V(h + z)]-n = given in Sx(0,T) (1b)
where n is the unit outward normal to Q and S is the boundary of Q. The initial condition

is

h=given fort=0 in Q. (lc)




In general the equations (1a-1c) are coupled with a parabolic system of equations for the
transport of a number of contaminants through the soil (Freeze and Cherry 1979 and Feng
1993). This is done by using the fluid velocity v = K(h)V(h + z) which is computed from
the above system.

In practice the empirical functions for moisture content and hydraulic conductivity
have several troublesome properties. First, they can have large derivatives, and this is
often the case for hydraulic conductivity. Second, they are not precisely known. Third,
they can have strong space dependence with jump discontinuities resulting from
heterogeneous porous media. The objective of this paper is to give an approach to these
problems which is based on methods used for the Stefan problem (Silva Neto and White
1993). Particular attention will be given to the first problem where there is no space
dependence. In the case of space dependent empirical functions, one can use additional
nodes and the continuity condition on the fluid velocity (White et al. 1993) to generalize
the methods of this paper.

Traditional methods for the solution of (la-1c) use an approximation. of the
empirical data by exponential functions (van Genuchten and Nielsen 1985). Then
numerical methods such as Newton, Picard, or Lees implicit factored method can be used
for problems without large derivatives (Paniconi et al. 1991). In addition to addressing
the above problems, the approach of this paper does not involve expensive function
evaluations and does eliminate the numerical oscillations associated with large derivatives
of the empirical functions.

In section two we present the general approach to the problem which is adapted
from the Stefan problem. Here the empirical functions are approximated by piecewise
linear functions which reflect the field data (White and Broadbridge 1988). The partial
differential equation is discretized by the finite difference method, and the resulting
nonlinear system is solved by a nonlinear SOR algorithm (Cryer 1971) which is described

in section three.




Numencal experiments are presented in sections four, five and six, and these
experiments were chosen to demonstrate the feasibility of realistic two dimensional
simulation of porous flows. Later, we indicate how one can extend these methods to three
dimensional and heterogeneous porous flows. We show agreement of the numerical
mode] with the field data from Brindabella silty loam soil. Also, we show how one can
develop comparison results which deal with the uncertain empirical data. High
performance computing issues are described. Here we demonstrate that the algorithm in
section three does not vectorize well, but it does work well for multiprocessors when
domain decomposition methods are used. Finally, we state our conclusions and related

work.

2, DISCRETE VERSION OF RICHARDS' EQUATION

In this section we state the finite difference discretization of Richards' equation and
make some comparisons with the Stefan problem. If in equation (1a) the last term is
eliminated, and h were to represent temperature with K now denoting the thermal
conductivity and 0 the enthalpy, then this would be the enthalpy formulation of the Stefan
problem (White 1985). In the Stefan probiem the ¥, and 0 have jump discontinuities at the
phase change temperature. SOR methods can be effectively used provided the
overrelaxation is not applied during a cell's phase change.

In Richards' equation we will approximate K and 6 by piecewise linear functions
which could be viewed as a number of "linear phases” associated with the nonlinear flow.
As in the Stefan problem we will apply the SOR method provided the cell is not changing
"linear phase." Table 1 gives some data for Brindabella loam which was extrapolated
from the graphs in White and Broadbridge (1988). Note, both 6(h) and K(h) are

monotone, and K(h) has large derivatives.
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Table 1: Brindabella Data

h O(h) K(h)

[m] [fraction] |m/hr]
-8.0 0.11 0.0

-1.2 0.27 0.000118
-08 0.30 0.000 327
-0.7 0.31 0.000 457
-0.6 0.32 0.000 664
-0.5 0.33 0.001 138
04 0.34 0.001 693
-0.3 0.36 0.002 326
-0.2 0.38 0.004 568
-0.1 0.42 0.011 117
-0.0 0.485 0.118 000

In Silva Neto and White (1993) two "linear phases” were used and were coupled
with the Kirchhoff change of dependent variable. Although this was a crude
approximation of the data, it did track the wet-dry interface where a rapid transition from
unsaturated to saturated regions occurs. In cases where either the transition is not rapid
or there is space dependence of the data, the Kirchhoff transformation is not applicable.
In the following we use an implicit time discretization of Richards' equation.

_‘9(_")% ~ (K(h)h,), - (K(h)h,), - K(h), = 0 .

where 1 is known from the previous time step. Here we are in two space dimensions, and
y is the vertical direction.

Next we discretize the space variable by the finite difference method. In the
calculations that we later discuss, we consider a two dimension flow with zero flow
through the sides and bottom, and nonzero flow through the top. The finite difference
grid is illustrated in Figure 1 where the nine types of boundary cells are indicated. Here

there are N = 3 cells in each direction and N2 = 9 unknowns.




0

(K(h)h\,* K(h)) =R

-K(h)h < 0 interior K(h)h < 0
cell

~(K(hy+ K()=0

Figure 1: Finite Difference Grid

Let (i,j) denote the location in the finite difference grid. Then the general form of
the finite difference equation at this location is

d,-c,h,=Th,) 1<isn andlsjsn,. 3)

If (i,j) is an interior node, then

&h,) | Kih,)
Ar Ay

T(h,)=

1 1
G~ (Kt—uz./ + K:—m.; )—A? + (Kumz + Ku-uz ) oy

Ay?
&h,,)
Ar

1
dl.} = + (Ktmz.jhm,j + Kt—uz.;hm,; )E{

1
+ (Kt,m/zhud + Ku—uzhu-l )’Z‘?

+ K(h,.'j‘,)-Al;.




In the above equation we used the convention that K,_,,. . is the average of the

hydraulic conductivity at the appropnate surrounding nodes. We also will assume that the
surrounding nodes are evaluated at a "previous iteration" value. Thus equation (3) is a
piecewise linear system as illustrated in Figure 2. Both the piecewise linear approximation
of the moisture content and hydraulic conductivity functions are monotone, and so, I

must also be monotone nondecreasing. Since the term on the left side of equation (3) has

negative slope, equation (3) has a solution, and it is unique. In Figure 2 the data is
depicted as being continuous, but this need not be the case. Even if I'(h) has a jump and
remains nondecreasing, one can still solve for a unique h (Silva Neto and White 1993).

I'(h)

Figure 2: Solution of Equation (3)

3. NONLINEAR SOR ALGORITHM

The following algorithm has evolved from the work by Cryer (1971) for set valued
systems of equations that may come from models of the Stefan problem. We apply a
variation to the system given in (3). The following variables are used:

maxit = number of allowable SOR iterations per time step,

n,,n = number of cells in the x and y direction,

w,w = overrelaxation (larger than 1.0) and underrelaxation (less than 1.0) .
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Nonlinear SOR Algorithm

for k = 1, maxit

fori=1.n,
forj=1.n,
compute ¢, and d,; as given in (3)
solve for h in (3) as given in Figure 2
if h and h, ; are in the same linear phase, then
h,=(1-w)h; +wh
else
h,=(1-w)h,,+oh
endif
end loop j
end loop i
test for convergence -
end loop k.

In the computation of the ¢ and d values one must consider the nine types of cells
as indicated in Figure 1. For more complicated geometric configurations and for
heterogeneous porous media, this will be more complicated. If adjacent cells have
different moisture content and hydraulic conductivity data, then one must insert additional
nodes between the cells and demand continuity of the flow velocity at the interface (White
et al. 1993).

In the solve step one must determine which linear phase the solution is in, and this
is done by partitioning the vertical axis as indicated in Figure 2 by the dotted lines that are
parallel to the line given by 4 — ch. Hence, the solve step has a loop in it which was not

indicated above. This hidden loop contains the nonlinear nature of the solve step.
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Moreover, if there is a large number of linear phases, then the solve step will become more
expensive to compute.

The overrelaxation is used to reduce the number of outer iterations. and the
optimal choice will vary with the number of unknowns. The underrelaxation is used to
avoid numerical oscillations, and this works well for choices between 0.8 and 0.9. The
numerical oscillations are a result of passing from one linear phase to the next linear phase.
This deals with the large derivatives of the data by breaking the changes in slopes into a
number of smaller changes in slope. We found this to be much more effective than the
traditional method of reducing the time step.

We experimented with a number of convergence tests. Finally, we imposed two
conditions:

(i) max|newh - oldh|<¢ and

(i) H | new 6 - old 8| < &,.

The first condition is aimed at possible convergence of the pressure at each node. The
second condition reflects possible convergence of the total moisture, and it is more of a

global test than the first condition.

4. COMPUTATIONS FOR BRINDABELLA LOAM

The purpose of these computations is to see if our model of Richards' equation will
accurately track the movement of moisture through Brindabella loam. We compare our
calculations with the observations in White and Broadbridge (1988). In our numerical
model we considered a 0.3[m] x 0.3[m] region with boundary conditions as indicated in
Figure 1. In the top boundary we used R = 0.0165[m/hr], and the initial pressure was set
as h = -8.0[m). The moisture content function was a linear interpolation of the data in
Table 1. The hydraulic conductivity data indicates a very increasing and concave up

function; consequently, linear interpolation of the data would generate large errors. In the
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calculations presented in Figure 3a we used a linear interpolation of the modified data for
hydraulic conductivity in Table 1, we reduced the intenor values by 50 percent and kept
the two end values at 0.0 and 0.118.

In our computations we set the following parameters at

At = 0.125[hr] Ax =0.015[m]

N =20[cellsineachdir] R =0.0165[m/hr]

o =09 o =14

g1 =104 € = 108,

Convergence was usually attained in 20-40 iterations. If no underrelaxation was used,
then numerical oscillations would occur about once every 20 time steps.

During the initial times, the hydraulic conductivity is small, and Richards' equation
is dominated by wave like properties. As time progresses the hydraulic conductivity
increases so that Richards' equation is dominated by diffusion. At time 6.0[hr] the steady
state solution has essentially been reached. At the bottom (y = 300[mm]) the porous
media is at saturation (0 =0.485). At the top (y=0[mm]) the porous media has pressure
such that K(h) = R (8(h) =0.426). At this time the diffusion force is equal to the

gravitational force; hence, no more moisture can enter the porous media.
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‘Figure 3a:  Computed Moisture for Variable Times

The observed moistures are indicated by discrete points in Figure 3b. These were
for the times of 1.0 (diamonds), 2.25 (triangles) and 5.0 hours (squares). The computed
values give good agreement with the observed values. The computed moisture content
curves are somewhat more smoothed than the observed moisture content data. This may
be attributed to large hydraulic conductivity data; if one reduces the hydraulic

conductivity for smaller pressures, then a sharp front can be calculated to match the
observed moisture content data.
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Figure 3b:  Observed Moisture Data for Variable Times

s. COMPUTATIONS WITH UNCERTAIN DATA

This section contains an analysis of the moisture as a function of the empirical
data of the moisture content and hydraulic conductivity functions. In practice much of this
data is not precisely known, and therefore, the effects upon the computations from any
model will have some uncertain aspects. In our numerical experiments we decreased K
and the computed moisture at the top increased. We also increased 6 and the computed
moisture at the top increased. In the computations indicéted in Figure 4, for time equal to
1.25[hr], we decreased K and increased 6, and the largest computed moisture content at
the top was the result. Here we kept the data at the end points of Table 1 fixed and varied
the interior data by increments of 20 percent. In all computations the computed moisture
content at the top increased while the computed moisture content at the bottom

decreased. This happens because the sides and bottom do not permit flow through them,

and the total moisture must remain constant.
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Figure 4: Moisture and Variable Data

In order to gain some insight on this, it is instructive to examine the finite
difference equation at the top region. In the case of the top center nodes, d has the form

K™ - -
d=-21-§—-—(-A—;flz+d where d has form similar to that given in (3).

Figure 5 shows that if I' increases, then the solution of (3) will decrease. Also, if d
decreases, then the solution of (3) will decrease. Therefore, if both I" increases and d
decreases, then the solution of (3) will decrease. If K decreases, then d will increase and
I' will decrease. However, if both K decreases, and 0 increases enough, then I" will
increase. For our choices of At and Ay this is the case. Of course, this is just an analysis

at one grid point, and the argument requires much more careful discussion.




14

=1

=

\

d-ch

'\\

d-ch

Figure §: Moisture and Variable Data Analysis

6. COMPUTATIONS USING MULTIPROCESSORS
In the computations reported in this section we tried to implement the above

algorithm on a single CPU with vectorization on a Cray Y-MP, the Alliant FX-40 with
two vectorized CPUs, and the Kendall Square Research KSR1 with up to 16 CPUs and no
vectorization. In the calculations in Silva Neto and White (1993) the vectorization
methods did not seem to work well. These attempts involved reordering the nodes by the
red-black order (checker board order). This method also did not work well for our
current problem. The reason for this is that the inner most loop has computations which
are too complicated to effectively be done on a vector pipeline.

The multiprocessing approach with domain decomposition reordering (White
1987. or Ortega 1988) was much more promising. This reordering is depicted in Figure 5
where L = 4 (the number of larger blocks of nodes) and the classical order of the blocks of
grid points is

R.%.B.P.F.F,P .
The domain decomposition order lists all the smaller interior boundary blocks first (even
number blocks in Figure 6) and is

PP ,F, P,P,P,P,

319%s>
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The 1dea behind this reordening is to take advantage of the 5-point finite difference pattern
Once the calculations in the even blocks have been done, then the calculations in the large

odd blocks are independent of one another.

Figure 6: Domain Decomposition Order

for k = 1, maxit
concurrently do SOR over the even blocks
update
concurrently do SOR over the odd blocks

test for convergence

end loop k.

In our calculations we used the Kendall Square Research multiprocessing
computer, KSR1, which is operated by the North Carolina Supercomputing Center. The
KSR1 multiprocessing computer has three parallel constructs that can be used in
FORTRAN code: tile, parallel section and parallel region. Tile is used to partition loops

and is very effective for simple computations such as matrix multiplications. Parallel

section can be used to concurrently execute different code segments. We used parallel

region which duplicates a code segment and uses different data streams. In our
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computations we controlled the number of processors by using a tream of processors that
are assigned at the beginning of the code and are used to reduce parallel overhead.

Table 2 shows the speedup and efficiency for a variety of L (the number of large
blocks) and N (the number of cells in each direction). These quantities are defined as
follows:

Si. = (CPU time using one block)/(CPU time using L large blocks) and

EpL =SL/L.

In the first four rows N varies and L is fixed. We see increased speedup and efficiency as
N increases. This is a result of decreased parallel overhead. In the last four rows N is
fixed, and L is increased. Here the speedup increases, but the efficiency decreases. Of
course, if there are many larger blocks (L) and the number of celis in each direction (N)
remains the same, then the relative size of the larger block to the smaller block decreases.
This partially dccounts for the decreased efficiency. These calculations did not attempt to
make the most efficient use of the FORTRAN language, or the most efficient use of the

KSR1 computer's architecture.

Table 2: Speedup and Efficiency

N L SL EpL

20 2 1.56 0.78
40 2 1.68 0.84
80 2 1.75 0.88
160 2 1.78 0.89
160 4 3.16 0.79
160 8 5.09 0.64
160 16 7.29 0.46




7. CONCLUSIONS

Richards' equation was approximated by the finite difference method, and the
empirical data for the moisture content and the hydraulic conductivity were approximated
by piecewise linear functions. The resulting nonlinear algebraic system was solved by a
variation of the nonlinear SOR iterative method. Good convergence properdes were
observed for three types of calculations which were chosen to demonstrate the feasibility
of realistic numerical simulations using this method. These included an accurate
simulation of fluid flow in Brindabella loam, a sensitivity analysis of the computed solution
upon the empirical data, and the use of multiprocessing computers via domain
decomposition methods.

In the ‘above calculations the empirical data did not have a space dependence.
However, in White et al. (1993) we illustrated for a steady state and one space dimension
version of Richards' equation that the compact volume method, in place of the finite
difference method, could be effectively used for such heterogeneous problems. The
compact volume method can be viewed as an enhanced finite difference method where
additional nodes are inserted at the cell interface and additional equations are generated by
requiring continuity of the fluid velocity at these interfaces. This may be done for all cell
interfaces or for just those cells where the empirical functions change with respect to the
space variable. We expect the methods of this paper to generalize via the compact volume

method to the more complicated heterogeneous case.




.
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A Compact Finite Volume Scheme for 2-D Stefan

l Problems and Vector/Multiprocessor Computers*

' R.E. Wnrte', B.N. Borai? and A J. KYRILLIDIS®

l Abstract

e consider both the compaci finite volume and finite difference space discretizations of the Stefan problem.
l WThe resulting algebraic systems are solved by nonlinear versions of ADI and SOR. Both algorithms contain
significant parallelism which is demonstrated on two vectorimultiprocessing computers, the Alliant FX/40 and
the Cray Y-MP. Numerical experiments indicate that the compact discretization and ADI give the best accuracy

with the minimum computational cost.

Introduction

This report outlines some new numerical methods for the
solution of multiple space dimension Stefan problcm. This
will include both SOR and ADI algorithms for the nonlincar
algebraic systems which result from both the FDM and
compact space discrctizations methos. Analysis of
convergence will be discused.

The ADI algorithms have been introduced because they
appear, in many examples, to be more effective than some of
the traditional algorithms related to the Stefan problem.
Morcover, these ADI algorithms, as in the lincar parabolic
problems, have large number of indcpendent tridiagonal
solvers. Therefore they can be effectively implemented on
vector/multiprocessing computers. This is illustrated for
Alliant FX/40 and the Cray Y-MP.

In this paper, we will use lhe cnlhalpy formulauon of the
Stcfan probicm. (See Rose)’, Elliot? and White® ).

l. E-ABE)=fonDx(0,T)
E(x,0) =givenon D
B (E(x4)) = givenon 9 D x(0,T)
where
' B(E)=Kirchoff transformed temperature

P(E)=u is the “‘inverse’ of the enthalpy funclion
E=H).

Typical values are (See Williams and Wilson”)
u= 270

l u' = 1.0E+2

a= 1.0E+3 (Degrees in Kelvin)

l *This research was sponsored by the Air Force Office of Scientific
Research, Bolling Air Force Base, D C Coniract No. F49620-89-C-
0010 and Army Research Office, Research Triangle Park, N C Con-
ract No.DAAL03-90-G-0126.

1. NC State Universily, Raleigh, NC
2 NC A & T State University, Greensboro, NC

L=15 l ?
Stefan Number = 1= (u - u)/L ' ‘
For thcse typical values and the range of v, it is important to

notc that

B (E)/E is Lipschitz continuous and

O<s ms (B(E))/ES M where

m = f (27000))/27000 = 270/27000 = 1.0E-2

M =P (27030))/27030 ~ 285/27030 = 1.,054E-2

The difference M-m = 5.4E—4 is relatively small and will be
important in a mild constraint on the time interval = A ¢,

Problem (1) may be dnscreuzcd in the time vanablc either
explicitly (sce Alhcy ) or implicitly (see White’ ). In the
former, this is a stability condition on A ¢, but there isnot a
nonlinear system (o solve. The implicit time discretization
yields no stability constraint on AT but it does give a
nonlincar system to solve. In White® and Ellio? nonlinear
SOR methods have been used 10 approximate this system
which has the form

2. E+A1AB (E)=d
Where A is an M-matrix associated with -A.

Later in White®, a modified version of (2) was studied so that
more traditional lincar solvers could be used in the solution
of (2). The component from of (2) is

E'-+ At Z a,-.j B(Ej)': d

j=i

c B (E)
i E“+ Alz (a"‘j—Ej'L Ej=d"
J=

e .
Let A(E) = I:a,-' i B_E(_ﬁ] and consider the vector form of (3)
j

E+AIA(E)E =d
4. I+ A1AE)E=d




For A1 somewhal testricted and the above typical valucs,
LrA 1 A(E) will be stricily diagonally dominant, and
therefore, nonsingular, This allows us to define the following

algorithm:
50" = grat AEM)Y ! d
The convergence of (5) was cstablished by showing for
suitably small At that the map was
G(E) = (/ + Dty AE™) ' d

contractive. However, numerical experimcats on a onc
variable Stefan problem showed that At conslraint note to be

too scvere.
This study extends the solution of and ¥ 0 higher
dimensions by considering ADI splitting associated with
A(E).

ADI: One 1l and V sweep per time sicp

Let A=H + V, wherc H and V arc associatcd with horizontal
grid rows and the vertical grid columns of - A. Then we define

H(E) = 1I(E) = [h.-, j E,(_.—E’-)J
7

- L;
]

h(E)=-;-+Arﬁ(E)

1) =-;- +AULV(E)
Notc I + At A(E) = N(E)+(E), and for mild constraint on
At h(E) andO(E) are nonsingular and triadiagonal.

This suggests the following nonlincar verion of the Peaceman
~Ranchford ADI algorithm for":

6.1

E“;::Z— E"+ 7T (4 V2 B V22 V2T
6.2

ptr!- g2 VEH ) = - TTE VY

A/2

At cach time step, k, (6.1) and (6.2) gives a nonlincar systcm
to solve:

7.1 h(Ek+ l/2)5k+|/2= dk-!-l/l_ O(Ek)Ek
12 O(Ek+|)Ek+l= dk-“l_ n(Ek+l/2)Ek4'|/2

It is uscful to incorporate the ADI accelcration parameler o
which will also alow as to avoid any further constraint on At

AB) = !+ N@EN- @I- VE)
Then (7.1) and (7.2) give

8.1
(ul-rh(Eh |/2)) Ek + 1/2=dk4 172 Vol - (\(Elu |/2))Elz

8.2
((1’*’ O(El'ﬁ»‘))Ek"'l: dk+|+ ((ll-— h(E*+I/2))Ek+I/2

Both (8.1) and (8.2) can be solved as in (5). For examplc,
consider (8.1) with k + 1/2 suppressed and m equals the
itcration index.

Consider

9 (al+ ﬁ(E)d
=1
10 "= @i+ NE™'d= (H—al-h(E"')) d

Proposition 1:

Let A, A(E), h (E), ¢ (E) be as above. Il A is an M-matrix
and B(L) is as dcfincd above, then A(E), N (E), O(E) are
non-singular for small Ar. Morcover, therc exists a, > 0such
that fora 2 uo(w’ converges to the unigue solution of O,

The proof follows that given in Whitc® for” and &,

In practicc a is uscd as an accelcration paramcter and usually
only 3-5 itcrations arc requircd to solve (8.1) or (8.2). The
schemes in (8.1) and (8.2) do not solve the implicit time step:

k+ ) _ ok
" E* - E, AEH ) B+ < fed)
For cach fixed problem in"" there arc a number of ADI

schemes with multiple H and V sweeps. We focus on only
onc in the next section,

ADI: Multiple H and V sweeps per time stop
Consider the simple nonlincrar syslcm(" with

AE)E= Tl (E)+ V(E),or
2. NE+ PENE=4d

Alter lincarization the multiple H and V sweep ADI
algorithin is

13.1

@/ + N E)E"* V2= d+ (@1~ O (E™)E™

13.2

@+ P EE" = d+ (ol- N (E™)E"H 12

One can solve (13.1) and inscrt it into (13.2) to obtain

4, E™*'= §(E™)+ I (E™)E™

If E™! converges, define E™* !

provided the spectral radius of H (E™) is less than 1. This is

15. E™*'= (- 11 (E™) 5 (E™)




ine (15) forms the outer itcration of our algorithm 1. solve
2).
Proposition 2

Consider (12) and the algorithms (13) - (15). Let the same
assumptions hold as in proposition 1. Thea there cxists a
@,> Osuchthatifa 2 @, the inner itcrations (14) converge

10 E™* Yin (15), and E7* ! converges 10 the solution in
(12).

The proof requircs the spectral radius of H(E) 1o be unifonnly
bounded below 1.0. This siep makes use of monotonicity
propertics (nonncgative matrices), and it contrasts with the
lincar casc where symmetric positive definitc matrices are
uscd.

The above schemes is not the only way to do multiple H and
V sweeps, but it docs allow onc o give a convergence
analysis. The best version of multiple H and V sweeps is not
yet clear. The numerical experiments that we have done
indicate that the Pcaceman-Ranchford method (onc H and V
sweep per lime step) is adequate.

Numerical Experiments

In this scction we consider the numerical solution of
E~ ABE)=0

where the domain D = (0,1) % (0, 1) x (0,1/v2)

and

cl-v’f(x«i-y)_ 1 1—7?2-(X+y)20
E= ' ;
-1, l—v'z—(x+y)<0

The space variables are discretized in two ways, the compact
finitc volume (CPT) (Sce Rosc'), and the traditional
five-point finitc diffcrence mecthod (FDM). The resulting
algebraic problems arc solved by ADI (one H and V sweep
per time step) and by SOR. The computations were donc on
two vector/multiprocessing computers: the Alliant FX/40
and the Cray Y-MP. The Alliant FX/40 has iwo processors
cach with a vector pipeline. The Cray Y-MP was uscd as a
single processor with a more sofisticatcd vector pipeline and
muh shorter clock cycle time (4 nsec as compared 10 170
nscc).

The CPT spacce discretization has a great deal of parallclism
which can be exccuted on cither vector pipelines or
mulliprocessing architcctures. The unknowns at the center of
the cells maybe grouped togcther, and the unknowns at the
boundary of thc cells grouped together. The resulting
coclficicnt matrix has the form of a two coloring scheme,
Hence one can exccute the SOR scheme for the CPT
discretization on vector pipclines. Also the CPT space
discretization when solved by ADI methods will have a large
numbcr of indcpendent tridiagonal solvers. Thus, the vector
version of the wridiagonal algorithm may be used.

In the casc of FDM spacc discretization, the traditional red-
black ordering of nodes allows veclorization of the SOR
algorithin. Also, domain-dccomposition methods have been
uscd on SOR sn that the two processors of the Alliant FX/40
can be cffcctively used. Of course, we can usc the vector
version of the tridiagonal algorithm to solve the FDM when
ADI is uscd.

Table 1 CPT-ADI
Cclis 16 32 642
Compulers
Alliant, scrial 2.01 15.64 122.28
Alliant, vector 102 5.98 38.63
Alliant, vector, 2 processors  0.57  3.32 21.07
Cray, scrial 0.129 0.89 6.52
Cray, vector 0062 0.32 1.76
Table 2 CPT-SOR
Cclls 162 322 642
Computcers
Alliant, scrial 468 74.44 1155.00
Alliant, vector 267 3072 50881
Alliant, vector, 2 processors 141 15,99 27091
Cray, scrial 041 6.23 96.24
Cray, vector 0.11 106 11.34

Table 1 contains computing time done for the compact
discretization and using one sweep ADI algorithm, Both
compuicrs were cffective vectorizers. Table 2 contains
computing limes donc for the compact discretization with
red-black ordering SOR algorithm where w=1.2

Table 3 FDM-SOR

Cells 162 322 642
Computers
Alliant, scrial 082 1293 186.72
Alliant, vector 0.89 1029 124.97
Alliant, vector, 2 processors 0.51  5.58 67.35
Cray, serial 0069 1.05 . 15.48
Cray, vector 0.043 0:42 4.19




The third wable contains computing times {or the FDM with
red- black ordering for SOR where w=1.2. This method
requires more itcrations to reach convergence than does the
CPT- SOR method.

All three methods give good accuracy. The CPT-ADI secms
to be more accurate and less computing time required for this
and related cxamples.
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Typical values are (See Williams and Wilson [7))

Yg = 270
/= 1.05‘.'2

8y = LOE+3 (Degrees in Kelvin)

L=15
Stefan Number = 1 = (u - u/LL

For these typical values and the range of u, it is important to note that
BENE is Lipschitz continuous and _

0<m< (BE)/ESM where

m = (§(27000))}/27000 ~ 270/27000 = 1.0E-2

M = (§(27030))/27030 ~ 285/27030 = 1.054E-2 ,
The difference M - m = 5.4E-4 is relatively small and will be important in a mild constraint

on the time interval = At.
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Abstract

Recently developed Compact Finite Difference scheme
(CPT) is applied to two dimensional diffusion equations.
The relative merits of CPT-ADI are investigated with other
compulational schemes such as finite difference method -
ADI (FDM-ADI) and FDM-SOR. The numerical results ob-
tained from these three approaches are compared to known
analytical solutions. The primary interest of this study lies
on veclorization and parallel processing. According to our
results shown in tables 1 CPT-ADI is found to be superior
scheme with regards to accuracy, than both FDM-ADI and
FDM-SOR. It is also fasiest algorithm than both FDM-ADI
and FDM-SOR as it is evident from CPU times.

1. Introduction

We shall describe briefly the compact finite difference
method (CPT) for one dimmensional steady state problem.
The extension to 2-D problem may be easily done. The
underlying physics behind this approach lies in solving the
differential equation in isolation from its neighboring
subintervals (i.c. compactly). Then, extend the solution in
the large by means of continuity conditions for the flux and
temperature accross the boundaries of the contiguous
subintervals (See Rose [1)).

We consider here one dimensional steady diffusion
probiem:
) D.E. u'=f
) f'=u
Q) B.C. f=g
forXelandI=[1_,I+)

Divide the interval I into m nonoverlaping subintervals:

®*  This rescarch was sponsored by the Air Force Office of
Scieatific Rescarch, Bolling Air Force Base, D. C. Contract No.
F49620-89-C-0010 and Army Rescarch Office, Research Triangle
Puask, N. C. Contract No. DAAL03-90-G-0126.

0-3106-2663-8/92 $03.00 © 1992 IEEE
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[=(xIx_1sxsx,1}
2 2

with center points x;, j=1/2,3/2,.., M - 1/2 and interior
endpoints x;, j=1,2,.., M -1. We shall adopt the finite
diﬁ'menotationsAxi=x“ln-xi_m.bizAxIZand
u() =u; We also denote:

I, = {1/2, 3/2,..., M - 1/2} (center points)

I = {1.2,..., M - 1} (interior endpoints)

Ax Ax
le— —Plg- -
F .- : .- :
"I -‘;‘ ‘J ‘J*-;- 'jol ﬁ .2
Fig. 1.

The discrete equations for (1) and (2) can be written as, for
jele,

@) U,1-9 1=4xf
2 2
" L_ .=h.u-
(5a) ¢]+2 ¢J ) ]+-;-
and ¢3'¢j-l=hjuj~-]_
(5b) 2 2

Next, it is required that both u and f be continuous across
every endpoint common to two intervals:

[i=[e}=0 forieL.




Using this continuity condition, {u]i = 0 in terms of ¢ we
have

0i-0i.L & l-0
2. 2
hi-l hi+.L
2 2

and in the case of equal intervals, which reduces to

Giol+dil

(6) I "'_'LQ—L' i € I (endpoints)

Now from (4) and (5) we get,

(78) ¢,-,%-2¢,-+¢,-.%=2h}f,-, ielk
and from (6)
(T) %+L-20j+¢.1=0, ik

The equations (7) and the boundary conditions lead to
determined system of algebraic equations for the values of §.
These equations lead to a tridiagonal system of equations
which is, therefore, solved by Thomas algorithm,

The extension to two dimensional scheme may be easily
done. Two dimensional stencil is shown in Fig. 2,

o -
Bser Setged
. s :
Slied
T -t —l

Tﬂ.;_‘ .., *‘ug\j [ LTI ¥ +
"I
J- '.U'%

Fig. 2.
Consider the two dimensional diffusion equation u, = u_,

+u,,. The compact ADI method is given by equaticns (8)
-(10):

n¢..L n
(88) ul.] - ul-j n#l. n
=F 2+Gj
T L) J
a+l n+l
(sb) ul.j - ui J 2 n+ 1
= 2 +Gr?
1 ij W)

where F; J and G; j e standard finite difference expressions

foruuanduyyrespecuvclyandt=ml2. Using the
standard finite difference scheme we get the following
equations

+1 +1 1
9 -u 2+(a+2)u 2 u“lzJ

llr'j_] +(a-2)u” -u“,”

2
Lj=1,3,..2M-1, a=38%  Ay_ay

At
10 wh +(@+2)ultl-urt) =
1 1 1
w2 +@-2u -0 2
i-1,} Lj i+,
ij=13,...,2M-1
and the continuity conditio.:- are
a+l 1l L
%) a2 +2u 2. u”lz =0
i-Lj i) i+1,j
i’j"2,4,- 2M'2
(102) -u{;‘_‘l+2u"*1-u"],}1 =0
ij=24,..,2M-2

The two algebraic systems (9), (92), and (10), (10a) can
be solved by the tridiagonal algorithm.

2. Numerical experiments

One of the primary objectives of this project is to
vectorization of 1-D and 2-D diffusion problems. We
vectorize the 2-D heat equation for the Cray Y-MP using
red-black SOR algorithm.

We consider one analytical solutions for the fol~wing
diffusion equation and compare them with respective




numerical solutions. The results are recorded in tables 1.

The two dimensional diffusion equation is u; = u,, + Uyy
+f(x,y.1), 0 < x< 1,0 <y <1, t > 0. The following analytical
solutions are considered:

u(xy) = 100x(1 - X)y(1-y)e, and f(x,y.1) = 200(y-y2 +
x-xz) - lOO(x-xz)(y-yze'l

All the problems mentioned above are associated with
Dirichlet boundary conditions.

The CPT-ADI is compared with FDM-ADI and
FDM-SOR. The functional errors in the method is O(h2) as
expected and derivative error is of O(h). The result is shown
in table 1.

FDM-ADI At = Ax2

No. of No.of| CPU Time
Hx=hy iters (sec)

Max Fct
Ermror

Max Derivative
Error

16 128 0.76  14.5924E-03] 1.01704E-02

32 512 6.15 1.1469E-03 | 5.24588E-02

64 2048 | 4948 |2.8667E-04] 2.66432E-02

CPT-ADI At=Ax

No. of No.of| CPUTime] MaxFct [Max Derivative
Hx=hy cellq iters (sec) Error Error
16 16 1.183 ]5.3563E-03 ] 5.33550E-03
32 32 9.26 1.3391E-03] 1.3390E-03
64 64 73.23 13.3479E-03] 3.3477E-03
FDM-SOR At=Ax
No. of No.of |CPUTime| MaxFct [Max Derivative
Hx=hy iters (sec) Error Error
240
16 w=165 2.10 3.5050E-03] 5.869E-01
960
32 o=1.80 36.73 2.155E-03 | 2.940E-01
64 3392 473.18 ]9.5737E-04| 1.469E-01
Jo=185

3. Concluding remarks

The x. y domains are devided into 8, 16, 32 and 64 cells
and in each case, the starting time is taken (0 be 0 and the
final time is 1. The relation between time step and space
step varies among FDM-ADI, FDM-SOR and CPT-ADI
schemes. We assume all the material constants are equal to
unity and Ax = Ay. Incase of FDM-SOR and CPT-ADI, Ax

=Ay=At and however in case of FDM-ADL At = (Ax)2.
This is the disadvantage for FDM-ADI. For example, when
Ax = 1.562SE-2, At = 4.883E4 and it would take 2048
iterations to reach time 1. However, CPT-ADI and
FDM-SOR are free from this difficulty. But SOR also has a
different disadvantage. Each time step, FDM-SOR takes
large number of iterations to converge to a preassigned
level. With 64 cells CPT-ADI requires only 64 iterations to
reduce the error level to 3.34792E-03, where as FDM-ADI
requires 2048 iterations to reduce the error level to
2.86671E-04 and FDM-SOR requires 3,392 iterations to
reduce the error level to 9.57374E-04.

As CPT algorithm requires more points evaluation per
iteration, it is obvious that CPT requires more CPU time
than FDM-SOR or FDM-ADI.
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Abstract

A recently developed Compact Finite
Difference Scheme is applied to 3 - D
diffusion equations. The relative merits of
CPT - AD! is compared. with two other
computational schemes such as Finite
Difference SOR and Finite Difference ADI.
The numerical results obtained from these
three schemes are compared to known
analytical solutions. The primary interest
of this paper lies in vectonzation and
parallel processing. CPT-ADI is the fastest
algorithm than both FDM-ADI! and FOM
-SOR as is evident from the CPU times.

1. Introduction

We shall briefly describe the Compact
Finite difference scheme for a 1-D steady
state problem. The extension to a 3-D case
maybe easily done. The idea behind
this approach is to solve the differential
equation in isolations from its neighboring
subintervals (i.e. compactly) and then
extend the solution in the large by means of
the continuity conditions for the flux and
the temperature across the boundaries of
the contiguous subintervals (See Rose[1]).

We consider here 1-D Steady diffusion
prcolem :

(1) DE. v=f

2 d=u

(3) B.C. O=g
0094-2898/93 $03.00 © 1993 IEEE

for XelandI={1.,L].

Divide the interval I into m nonoveriapping
subintervals:

I = {x/ Xj.12 S X S Xjs112}

with center points
gL EE ST
and interior endpoints
X5 j=120e M-l
We shall adopt finite difference notations

Ax; = xi-o-i-""i --}' hig%'x'
and u(i) = u; . We also denote :

I. = {33, .. M4} (Center Po ints)

I, = {(1.23. ... M1} (inte rio r endpoints)

e h

)
4
’

,

Fig. 1
The discrete equations for (1) and (2) can be
written as , forje L.,

(4) UJ*.%-\IJ_} =AXJ fj -

(Sa) Pj+ = ®; =h;u;,1




and

Gb) ;-0 =hju;_J

Next, it is required that both u and f be
continuous across every endpoint common to
two intervals :

[uli=[@} =0 foriel,

Using this continuity condition , {u];= 0, in
terms of @ we get

Pi-9i-1 P+l - @i
hi_y By
and in case of equal intervals, this reduces to

Qivd+0;_
© o; =—+L2——% ielg (endpoints)

Now, from (4) and (5). we get

(7a) P; "'i - 20 +q>j_% = 2h§fj. iel,
and from (6) we have

(7b) o; +% - 209 +¢pj_% =0, ielg

The equations (7) and the boundary
conditions leads to a determined system of
algebraic systems for the values of @, which
can be solved by Thomas Algorithm.

The extension to a three dimensional
scheme may be done easily .
E ?meDimensionalstencilisshownin
1g. 2.

Ui.'?z,k
<l i P T o
- i+2.j+ Uk 3.k
U/., X
Ui éz K

Consider the 3-D diffusion equation u,= Ugy -

Uyy + Uz;. The Compact ADI method is given
by equations (9) - (12) :

u. u
i.1.k 1.3.k 1
(8a) s =2Fj, +G 13
] 1 h
w2, —u™g
@by —liglE oGtz o
i.j.k J.k

u. 4. -1u.
i,j.k i,k n+ 1
(8c) — =G % + ZH?:';{k

“}H'} k-ui é
v g,k n+
8d) <= =G

n+1
+ 2K &

v»fhere Fij.x. G.j.x and H; j,kx are finite
difference approximation to u,, Wyy and u,,

respectively and 0='§l- Using the standard
ﬁmte_dxﬂercnee scheme, we get the folllowing
equations :
1
o - )’Y“:;%l,k*' (l+21.y) u?ﬁ— l.yu:;%l K
=2y ulyj,kr Q4Apul y+ Axul, .y

ijk=13, ...2M-1, A, = A, = 4.0, Ax=Ay=Az.

(10) -2, u" 2 |+ (1441 u:;'%k -2, 92
=Ayu 4, Oy “:;%: +hy “i'f}%l,k

ijk=1.3, ....2M-1, A, = Ay = 4.0, Ax=Ay=Az

(11) -ly uiﬁl % (1+21.y) ui';.,i-k -l.y u. .

Lj-1.k

1
- _ _ n
= Zkzui’j’ ot ¢ 42,z)ui'j’ 2“7"1.;.5;-1

ijk=1.3, ....2M-1, A, = A, = 4.0, Ax=Ay=Az




(12) =2h, uby!

n +,i
=Ay u*%l L+(l ZA.y)u +l. uU 4k

l.J.k"l3 w2M-1, A = Ay 40, Ax=Ay=Az

and the continuity conditions are

9a) - n-.r-} +2u'“% m%

x.j-l k-

+2u'»%‘ :*i-l
(lla)-u'“'i' +2u""% ""'i'

(12a) -—llgﬁl'j Xt leg’lk-ll?:ll'j:k =0

ijk=24, ....2M, Ay = Ay = 4.0, Ax=Ay=Az

The four algebraic systems (9),(9a).(10),(10a),

(11),(11a) and (12) & (12a) can be solved by
the tridiagonal algorithm.

The Finite Difference ADI euations for 3-D
diffusion equation are given below:

o™ _un,
(13) ""‘ Thi —umd =

yyHiz
(14) m’%%uﬁk e PR

(ma)- u

XX

pel n+§
1.1 k™
a5 — =ultf +ultd
Hexco=—%—‘.
Using the standard Finite Difference scheme
we get the following equations :
W RTCTE Wt P N
(16) -lyux.,)'b-l.k A'yu")_l'k*'xluh).k‘#l-"
AN e HI-2Ay - 20 0] 5

j k+(]+4kx)upj{lk—7)~ UP:IIJ k

-
nﬁ

-

+(1+22.0072 A u™F
A R M

L Hhx uf’*‘! Lt Auls

MY 1 K

(17) =], *5
+A u""3'

1.).k+l]
+(1—2}..x ZK.I)u""'

—h iy, k+1+(1+2)‘7)un+1k xz“ih;l k-1
(18) = l.,(u'“'{J k+kxu“"'3 L. k+)‘.},ul 3k
+ A.yu;':?_ 1 H1-2A - 24 )t n

L.k

Finally , the Finite Difference SOR scheme for
the 3-D Diffusion Equation is given below :

(1+67~)Utemp uf; ,‘+Atff,"‘J +
Mux -1, k+um+ k+ul+lj k
+ul ;i pruls ul )

uff*jl,k = (I-w) uf?; y + @Utemp, 1<w<2,

Here A = 4.0 and m is the iteration index.

2. Numerical Experiments

One of the primary objectives of this project is
to vectorization of the 3-D problems. We use
red-black SOR algorithm to vectorize the 3-D
heat equation for the Cray Y-MP.

We consider one analytical solutions for the
following diffusion equation and compare
them with respective numerical solution. The
results are recorded in Table 1.

The 3-D diffusion equation is u, =u,,+u,,
Hn+f(xyzt).0<x<1,0<y<1, 0<z<1
t>0.

The following analytical solutions is
considered: ‘

u(x,y.z.t) = 100x(1-x)y(1-y)z(1-z)e-t and
f(x.y,z.t) =(200((y-y2(z-22+(y-y2(x-x2r*
(z-22)(x-x2)) - 100x(1-x)y(1-y)z(1-z))e-t

All the problems mentioned above
are associated with Dirichlet boundary
conditions.




The CPT-ADI is compared with FDM-ADI
and FDM-SOR . The Functonal errors in
the method is O(h?) and derivative error

is O(h). The result is shown in Table 1.

CPT-ADI
# of iter U Time Max Fct | Max Der
cells (sec) Error Error
4 4 0.0042 0.0685 0.2828
8 8 0.0912 0.0341 0.1326
16 16 | 23406 00046 | 0.0159
FDM-ADI
# of jter 1CPU Time Max Fct ) Max Der
cells (sec) Ermor Emor
4 16 0.012 0.00977 0.6179
8 &4 0.366 0.00241 0.2974
16 256 10.72 0.00006 0.1461
FDM-SOR
#of iter |CPU Time Max Fct | Max Der
cells ome (sec) Exror Error
36
4 145 | 0.0043 0.00318 0.584
72
8 0.1008 0.00103 0.2909
1.55
304
16 3.158 0.00025 0.1449
1.75
Table 1

MaxError

¢.o8}

.06t

0.04

0.02p

-%;}'—-_—-——-——# of Cells
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The curve (1) is for the CPT-ADI
scheme, curve (2) is for the FDM-ADI
scheme while curve(3) is for the FDM
-SOR scheme.

MaxDerError
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= N W et oy
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curve (1) above shows the graph of the
maxder error Vs. the number of cells for
the CPT-ADI scheme. Curve (2) shows the
graph of maxder error Vs.number of cells
for the FDM-SOR scheme and curve(3)
shows the graph of maxder error Vs. the
number of cells for the FDM-ADI scheme.
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Figure 3
curve (1) is for the CPT - ADI scheme,
curve (2) is for the FDM-SOR scheme and
curve (3) is for the FDM-ADI scheme.

3. Concluding Remarks

The x, y, and z domain are divided into 4,
8 , 16 cells and in each case, the initial time
is taken to be 0 and the final time is 1. We
assume ail the material constants to be equal
to unity and Ax = Ay = Az. In case of FDM-
SOR and CPT-AD], Ax = Ay = Az =At and
however in case of FDM-ADI, At = (Ax)2,
This is the disadvantage of FDM-ADL
However, CPT-ADI and FDM-SOR are free
from this difficulty. But SOR has a different
disadvantage, for each timestep, FDM-SOR
takes large number of iterations to converge
to a preassigned level. With 16 cells , CPT-
ADI requires 16 iterations to reduce the
error level to 4.59 E -3 , whereas FDM-ADI

ires 256 ircvations to reduce the ermor
level to 6.0E -4, whereas FDM-SOR
requires 304 iterations to reduce the error
level to 2.4872 E4.

In comparing CPU times among all the

three approaches, it is found that CPU time
for FDM-ADI is the worst. For the
problem with 16 cells, CPT-ADI takes
only 2.346 sec. However, FDM-ADI
approach takes 10.72 secs for the same
problem.

In terms of derivative errmror, CPT-AD]
is the best, it is close to the order of O(h2).
The error analysis for the three approachw
are shown in Figure 3. :
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